Abstract
In previous papers of this series the problem of energy interchange between a gas atom and a solid has been discussed for the case when the gas atom makes a transition between two adsorbed states or between an adsorbed state and a free state. In this paper we shall discuss the case of a transition between two free states and apply the results to the determination of the thermal accommodation coefficient. In recent years a number of theoretical papers on this subject have appeared, following the new and accurate experimental work of Roberts, who worked with helium and neon on tungsten. The authors, however, neglect, or only roughly take into account, the attractive field which is known to exist between the solid and the gas; the fact that atoms become adsorbed on the surface is clear evidence of the existence of such a field. In this paper we shall suppose that the interaction potentials between solid and gas atom can be represented by a Morse potential function, for it has the right characteristics; in that it is attractive at large distances and repulsive at small ones, and has a minimum in between. The formulae of this paper are accordingly more general than previous ones and contain them as special cases. They are applicable to experimental results such as those of neon on tungsten for which earlier theories would not be adequate.
Cited by
164 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献