The interaction of atoms and molecules with solid surfaces VIII—The exchange of energy between a gas and a solid

Author:

Abstract

In previous papers of this series the problem of energy interchange between a gas atom and a solid has been discussed for the case when the gas atom makes a transition between two adsorbed states or between an adsorbed state and a free state. In this paper we shall discuss the case of a transition between two free states and apply the results to the determination of the thermal accommodation coefficient. In recent years a number of theoretical papers on this subject have appeared, following the new and accurate experimental work of Roberts, who worked with helium and neon on tungsten. The authors, however, neglect, or only roughly take into account, the attractive field which is known to exist between the solid and the gas; the fact that atoms become adsorbed on the surface is clear evidence of the existence of such a field. In this paper we shall suppose that the interaction potentials between solid and gas atom can be represented by a Morse potential function, for it has the right characteristics; in that it is attractive at large distances and repulsive at small ones, and has a minimum in between. The formulae of this paper are accordingly more general than previous ones and contain them as special cases. They are applicable to experimental results such as those of neon on tungsten for which earlier theories would not be adequate.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interfacial thermal resistance: Past, present, and future;Reviews of Modern Physics;2022-04-22

2. History of Surface Phonons and Helium Atom Scattering;Springer Series in Surface Sciences;2018

3. Nonergodic Brownian Motion in a Collinear Particle-Coupled Harmonic Chain Model;Chinese Physics Letters;2013-01

4. Dynamic properties of integrated nanostructure on metallic surface;Journal of Applied Physics;2012-02-15

5. A vibrational dynamics of molecule chain on metallic surface;The European Physical Journal Applied Physics;2012-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3