On some measurements of the equivalent height of the atmospheric ionised layer

Author:

Abstract

In previous communications various experimental methods of examining the characteristics of downcoming wireless waves have been described. Of these methods by far the most useful has proved to be that which involves a small continuous change of transmitter wave-length, by means of which there is produced at a receiving station a succession of interference maxima and minima between ground waves and waves deviated by the upper atmosphere. By using loop and antenna receiving systems in several different ways it has been possible to estimate, from a comparison of the interference “fringe” amplitudes, the relative intensities of the ground and atmospheric waves and also the angle of incidence of the latter at the ground; while a comparison of the phase differences between the two sets of waves, as deduced from the interference “fringes” recorded on different types of aerial systems, has yielded information relating to the polarisation of downcoming waves. In all such investigations, however, the number of “fringes” produced by a known wave-length change has been found, even when the determination of that number was not the primary object of the experiment. In this way the equivalent path difference for the ground and atmospheric wave tracks has been calculated as a routine measurement from which the equivalent height of the ionised layer could be deduced. In the course of such investigations carried out at the Peterborough Radio Research Station, much evidence has therefore accumulated relating to the diurnal variation of the equivalent height of those regions in the atmosphere which are responsible for the deviation of wireless waves. As was pointed out in the first communication dealing with the work of the station, considerable interest is, in the study of wireless wave propagation, attached to the transitional periods of sunrise and sunset. As the experiments under discussion were usually carried out on wave-lengths of from 300 to 600 metres ( i. e ., on frequencies of from 1000 to 500 kilocycles per second) the study of the sunset period was, except on rare occasions, impossible, because of interference from broadcasting transmitters. The majority of the tests therefore took place during the sunrise period when, in addition to the advantage of the low level of artificial interference, there was also that of the early morning minimum of natural atmospheric disturbances. In carrying out such early morning runs it was soon found that, in the few hours before sunrise, the signal records showed the presence of both primary and secondary interference maxima and minima, indicating the simultaneous reception of two or more downcoming rays. After sunrise the phenomena became simpler and smooth “fringes” were recorded. This latter particular period was therefore especially suitable for the determinations of the characteris­tics (intensity, angle of incidence, polarisation, etc.) of downcoming waves already described. The present communication, is in part an attempt to elucidate these pre-sunrise phenomena and in part an introduction to two papers which are to follow, since it was the study of the significance of multiple downcoming rays which led to the investigation of the subject with which these two papers respectively deal, namely, the simultaneous reception of downcoming waves at several receiving stations and the use of shorter wave-lengths.

Publisher

The Royal Society

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3