Atomic hydrogen III—The energy efficiency of atom production in a glow discharge

Author:

Abstract

There seems to have been a tendency amongst workers on the use of the glow discharge as a source of atomic hydrogen to regard the current or power as determining the degree of dissociation of the gas, i. e. the equi­librium H 2 ⇌2H. It is clear, however, that the discharge itself determines only the rate of production of atoms, whereas the degree of dissociation depends also on the rate of removal of atoms by pumping and by recombina­tion processes which are independent of the discharge. The two homogeneous recombination processes are those resulting from three-body collisions be­tween three atoms and between two atoms and a molecule; in addition, there is a heterogeneously catalysed reaction in which the walls of the tube act as the energy acceptor. Attempts to connect electrical conditions with degree of dissociation have been made by Crew and Hulburt (1927) and by Wrede (1929), but the above remarks show that only empirical relationships can be hoped for. In Crew and Hulburt’s experiments, the degree of dissociation was estimated by measuring the change of pressure in a closed system on passing a discharge. A correction for temperature was applied, which was based on the erroneous idea that the rise of temperature due to discharge in helium is about the same as that in hydrogen at the same pressure and power input. The method of determining the pressure depended on an empirical relation between pressure and the length of the cathode dark space in an auxiliary discharge connected to the main system ; but since the cathode dark space has not a sharply defined boundary, and the degree of dissociation is calculated from the difference of two pressures measured in this way, considerable error is possible. Furthermore, in a closed system, the rate of production of atoms is equal to the rate of recombination; and since these workers relied on a water-on-glass film to inhibit heterogeneous recombination, and as the power input was 200-1000 W, the catalytic activity of the walls must have been very variable and large (Part II). Crew and Hulburt’s curves con­necting degree of dissociation with pressure and power input cannot, there­fore, be credited with quantitative significance.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference7 articles.

1. Crew a n d H u Ib u rt 1927 P hys.Rev. 30 124.

2. E m eleus L u n t a n d M eek 1936 Proc. Roy. A 156 394.

3. H e rtz 1923 Z .Phys. 19 35.

4. Proc. Roy;Soc. A,1936

5. Proc. Roy;Soc. A,1937

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and theoretical study of dissociation in the positive column of a hydrogen glow discharge;Journal of Applied Physics;1997-09-15

2. Hydrogen dissociation in a microwave discharge for diamond deposition;Diamond and Related Materials;1993-02

3. Electron and vibrational kinetics in the hydrogen positive column;Journal of Physics D: Applied Physics;1989-11-14

4. Theoretical Foundations;Combustion, Flames and Explosions of Gases;1987

5. Microwave Plasma Generation of Hydrogen Atoms for Rocket Propulsion;Journal of Spacecraft and Rockets;1982-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3