The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles

Author:

Abstract

1. The structure and innervation of muscle spindles from normal, de-afferented and de-efferented muscles of the cat hind limb were studied. The spindles were either completely isolated by microdissection, or were serially sectioned transversely. 2. All spindles contain two distinct types of intrafusal muscle fibre, ‘nuclear bag fibres’ and ‘nuclear chain fibres’, which differ in structure and innervation. 3. Nuclear bag muscle fibres, usually two per spindle, are less than half the diameter of extrafusal fibres, and each contains numerous large nuclei packed together in the equatorial region of the spindle. Nuclear bag fibres practically never branch. The fibres contain numerous myofibrils uniformly distributed in cross-sections, and relatively little sarcoplasm; they atrophy very slowly after the ventral spinal roots are cut. Several small motor nerve fibres (y, fibres) enter each spindle and terminate in a number of discrete motor end-plates on the nuclear bag muscle fibres. These y x end-plates lie in a group at each spindle pole and long lengths of nuclear bag fibre are free of motor innervation. 4. Nuclear chain muscle fibres, usually four per spindle, are about half the length and diameter of nuclear bag fibres in spindles in the leg muscles. The nuclear chain fibres in spindles from the small muscles of the foot may, however, equal the nuclear bag fibres in length, and in diameter beyond the ends of the lymph space. Each nuclear chain fibre contains a single row of central nuclei in the equatorial region; the fibres occasionally branch, but often none of them do so. They contain fewer myofibrils per unit area, irregular in size and distribution, and relatively more sarcoplasm, than nuclear bag fibres. Nuclear chain fibres atrophy nearly as rapidly as extrafusal fibres after the ventral roots are cut. A number of very fine motor nerve fibres fibres) enter each spindle and terminate in a network of fine axons and small nerve endings (the network’) situated on the nuclear chain muscle fibres in most regions other than the nuclear region. 5. All spindles receive both y 1 xand y 2 innervation, fibres forming slightly more than half of the total number of motor fibres which varies from seven in simple spindles in phasic muscles to twenty-five in the most complex spindles in tonic muscles. Both y 1 and y 2 fibres remain intact after dorsal root transection and degenerate following ventral root transection. The histological evidence supports the view that the yj and y2 nerve fibres at the spindles are derived from two types of stem fibre, neither of which belongs to the a group. 6. Each spindle has one primary sensory nerve ending, supplied by one group 1 a afferent nerve fibre, and from zero to five secondary sensory nerve endings, each supplied by one group II afferent nerve fibre. The primary sensory terminations lie on both nuclear bag and nuclear chain muscle fibres. The secondary sensory terminations lie predominantly on the nuclear chain muscle fibres. In spindles with several secondary sensory endings, their terminations may lie on the same region of nuclear chain fibres as motor endings of the y 2 network. 7. In general, spindles in tonic muscles have more secondary sensory endings and motor nerve fibres and endings than those in other muscles. Nuclear chain intrafusal fibres are probably functionally ‘slower’ than nuclear bag intrafusal fibres, while both types are ‘slower’ than extrafusal fibres. Both nuclear chain fibres and nuclear bag fibres, however, probably show a gradation in activity related to the nature of the muscle in which they lie. The reader is advised to study figure 33 and its legend first, at the same time studying the plate figures to which reference is made in figure 33 b , then to read the portions of the Results in italics consecutively followed by the Discussion, finally studying the detailed Results. Further details of many of the illustrations and tables are available for reference in the Archives of the Royal Society.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference53 articles.

1. The innervation of the muscle spindle;Barker D.;Quart. Micr. Sci.,1948

2. Some results of a quantitative histological investigation of stretch receptors in limb muscles of the cat;Barker D.;J. Physiol.,1959

3. Barker D. & Chin N. K. i 960 The number and distribution of muscle-spindles in certain muscles of the cat. J. Anat. Lond. 94 473-486.

4. Efferent Innervation of Mammalian Muscle-spindles

5. Barker D. Cope M. & Ip M. C. i960 Tandem muscle spindles in the frog and cat. J. Physiol. 154 23-24P.

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3