The absorption spectrum of the free NCO radical

Author:

Abstract

Two systems of absorption bands have been observed in the visible and ultra-violet regions of the spectrum during the flash photolysis of several organic cyanates, and have been photographed under high resolution with long absorbing paths. Extensive vibrational and rotational analyses have been carried out for the bands of one system and show that the spectrum is due to an electronic transition A ( 2 Z + ) <-- X ( 2 II < i ) of the free NCO radical, which is linear in both states. All three vibrational frequencies and the first-order anharmonic constants have been obtained for the upper state, A ( 2 { + ), and give a close fit to the term values of 21 observed vibrational levels. A Fermi resonance has been observed between v ' 1 and 2v' 2 . In addition, the rotational constants B' and D' and their variations with all three fundamental vibrations have been obtained for this state. Transitions have been observed from four excited levels of the bending vibration in the lower state, X ( 2 II i ), and the rotational constants have been determined for some of these levels. Interaction between the electronic and vibrational motions (Renner effect) complicates the vibrational structure of this state. The state belongs to Hund’s coupling case ( a ), and the spin-orbit coupling gives a splitting A" = —95.6 cm<super>-1</super>. In a 2 { + vibronic level of this state (arising from l = 1 and A = 1) the spin sp litting is proportional to N +1/2, but the spin-splitting constant y is unusually large, and amounts to 30 % of the B value. The electronic states of NCO are correlated with those of its dissociation products. This shows that the bond dissociation energy of the CO bond is slightly greater than that of the CN bond in the three known states.

Publisher

The Royal Society

Subject

General Engineering

Reference29 articles.

1. Adel A. & Dennison D. M. 1933

2. Almy G. M. & Horsfall R. B. 1937

3. Am at G. & Goldsmith M. 1955

4. Bueso-Sanllehi F. 1941

5. Phys.Rev. 44 99. Phys.Rev. 51 491.

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3