Abstract
The thermal and electrical conductivities of silver and copper alloys with high electrical resistivities were studied in the temperature range from 0.3 to 4 °K. The lattice thermal conductivity results were interpreted in terms of Pippard’s semi-classical theory of the electron-phonon interaction and good qualitative agreement between this theory and the measurements was obtained for the temperature range from 1 to 4 °K. Below 1 °K the thermal conductivity of most samples decreased much more rapidly than one would have expected if the phonon mean free path were limited by the electron-phonon interaction only. Other phonon scattering mechanisms were therefore postulated and the effects of phonon scattering from dislocations was studied both theoretically and experimentally. The increase in thermal resistance below 1 °K of most alloys was more rapid than the increase obtained theoretically for phonon-dislocation and phonon-boundary scattering. The thermal conductivity of a copper sample with a resistance ratio of about 85 was found to be anomalous below 1 °K as well, suggesting that both the phonons and the conduction electrons could contribute to the effect in the alloys.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献