The crystallographic point groups as semi-direct products

Author:

Abstract

This paper aims at providing a systematic treatment of the crystallographic point groups. Some well-known properties of them, in terms of the theory of the poles of finite rotations, are first discussed, so as to provide a simple way for recognizing their invariant subgroups. A definition of the semi-direct product is then given, and it is shown that all crystallographic point groups can be expressed as a semi-direct product of one of their invariant subgroups by a cyclic subgroup. Many useful relations between point groups can be obtained by exploiting the properties of the triple and mixed triple semi-direct products, which are defined. Much of the rest of the paper is devoted to the theory of the representations of semi-direct products. The treatment here parallels that given by Seitz (1936) for the reduction of space groups in terms of the representations of its invariant subgroups (the translation groups). The latter, however, are always Abelian and this is not always the case for point groups. The full treatment of the general case, such as given by McIntosh (1958), is laborious and it is shown that, if the emphasis is placed on the bases of the representations, rather than the representations themselves, it is possible to achieve the reduction of the point groups by a method hardly more involved than that required when the invariant subgroup is Abelian. It is also shown that, just as for space groups, the representations of the invariant subgroups can be denoted and visualized by means of a vector, which allows a very rapid classification of the representations, very much as the k vector as used by Bouckaert, Smoluchowski & Wigner (1936) allows the formalism of the Seitz method for space groups to be carried out in a graphical fashion. One of the major consequences of this work is that it affords a substantial simplification in the use of the symmetrizing and projection operators that are required to obtain symmetry-adapted functions: a very systematic alternative to the method given by Melvin (1956) is therefore provided. In the last section of the paper all the techniques discussed are applied in detail, as an example, to the cubic groups. The projection operators are used to obtain symmetry-adapted spherical harmonics for these groups. The paper might be found useful as an introduction to the methods for the reduction of space groups.

Publisher

The Royal Society

Subject

General Engineering

Reference5 articles.

1. On the symmetries of spherical harmonics

2. Altmann S. L. 1957- Progress Report no. 3. Oxford: M athem atical Institute Q uantum Chemistry Group p. 33. (Unpublished.)

3. Altmann S. L. 1962 Group theory in Academic Press.

4. Altmann S. L. & Bradley C. J . 1962

5. Bouckaert L. P. Smoluchowski R. & Wigner E. 1936 Quantumtheory (ed. D. R. Bates) vol. 2 p. 87. New York:

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3