Random walk on a sphere and on a Riemannian manifold

Author:

Abstract

A random walk on a sphere consists of a chain of random steps for which all directions from the starting point are equally probable, while the length a of the step is either fixed or subject to a given probability distribution p(a). The discussion allows the fixed length a or given distribution p(<x), to vary from one step of the chain to another. A simple formal solution is obtained for the distribution of the moving point after any random walk ; the simplicity depends on the fact that the individual steps commute and therefore have common eigenfunctions. Results are derived on the convergence of the eigenfunction expansion and on the asymptotic behaviour after a large number of random steps. The limiting case of diffusion is discussed in some detail and compared with the distribution propounded by Fisher (1953). The corresponding problem of random walk on a general Riemannian manifold is also attacked. It is shown that commutability does not hold in general, but that it does hold in completely harmonic spaces and in some others. In commutative spaces, complete analogy with the method employed for a sphere is found.

Publisher

The Royal Society

Subject

General Engineering

Reference3 articles.

1. C han d rasek h ar S. 1943

2. Copson E. T . & R use H . S. 1940

3. Proc;Edinb. Math. Soc.,1919

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimate of force noise from electrostatic patch potentials in LISA Pathfinder;Classical and Quantum Gravity;2024-08-30

2. Paul Harry Roberts. 13 September 1929—17 November 2022;Biographical Memoirs of Fellows of the Royal Society;2023-11-29

3. An efficient convergence method for calculating the angular distribution of electron multiple elastic scattering;Journal of the Korean Physical Society;2023-04-17

4. Geometric quantum thermodynamics;Physical Review E;2022-11-01

5. Geodesic quantum walks;Physical Review A;2022-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3