Abstract
General formulas for estimating the errors in quantum-mechanical calculations are given in the formalism of density matrices. Some properties of the traces of matrices are used to simplify the estimating and to indicate a way of obtaining a better approximation. It is shown that the simultaneous correction of all the equations to be fulfilled leads in most cases to a faster convergence than the exact fulfilment of some of the equations and approximating stepwise to some of the others. The corrective formulas contain only direct operations of the matrices occurring and so they are advantageous in computer applications. In the last section a ‘subjective error’ definition is given and by taking into account the weight of the errors of the several equations a faster convergence and a single error quantity is obtained. Some special applications of the method will be published later.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Group Classification of Many-Body Interactions;Physical Review;1967-11-20
2. On the “best” approximation in quantum mechanics;Acta Physica Academiae Scientiarum Hungaricae;1965-12
3. On the error of approximations in quatum mechanics II. Some particular applications;Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences;1965-03-18