Abstract
Almost fifteen years ago in the pages of this Journal, one of us presented power spectra of ocean waves and swell off Pendeen and Perranporth in north Cornwall (Barber & Ursell 1948). The outstanding feature of these spectra is the successive shift of peaks toward higher frequencies. This is the expected behaviour of dispersive wave trains from rather well-defined sources. Storms generate a broad spectrum of frequencies; the low frequencies are associated with the largest group velocity and accordingly are the first to arrive at distant stations. The time rate of increase in the frequency of peaks determines the distance and time of origin. In this way Barber & Ursell were able to identify the dispersive arrivals with a low pressure area in the North Atlantic, a tropical storm off Florida, and a storm off Cape Horn, at distances of 1200, 2800, and 6000 miles, respectively, from the Cornish stations. The measurements were consistent with the simple classical result that each frequency,/, is propagated with its appropriate group velocity, V = g/(47[/*). The present study is in a sense a refinement to the work of Barber & Ursell. The frequency resolution and sensitivity have each been increased by an order of m agnitude, and this makes it possible to detect and resolve meteorological sources that have previously been out of reach. The antipodal swell from the Indian Ocean is a case in point
Reference9 articles.
1. Backus G. E. 1962 DeepSea Res. (in the Press).
2. Finding the Direction of Travel of Sea Waves
3. Barber N. F. 1958 N . Z . J . Sci. 1 330-341.
4. Barber N. F. & Doyle D. 1956 Deep Sea Res. 3 206.
5. Barber B. F. & Ursell F. 1948
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献