Studies on Magneto-Hydrodynamic Waves and other Anisotropic wave motions

Author:

Abstract

There are two separate but closely interwoven strands of argument in this paper; one mainly mathematical, and one mainly physical. The mathematical strand begins with a method of asymptotically evaluating Fourier integrals in many dimensions, for large values of their arguments. This is used to investigate partial differential equations in four variables, x, y, z and t , which are linear with constant coefficients, but which may be of any order and represent wave motions that are anisotropic or dispersive or both. It gives the asymptotic behaviour (at large distances) of solutions of these equations, representing waves generated by a source of finite or infinitesimal spatial extent. The paper concentrates particularly on sources of fixed frequency, and solutions satisfying the radiation condition; but an Appendix is devoted to waves generated by a source of finite duration in an initially quiescent medium, and to unstable systems. The mathematical results are given a partial physical interpretation by arguments determining the velocity of energy propagation in a plane wave traversing an anisotropic medium. These show, among other facts not generally realized, that even for non-dispersive (e.g. elastic) waves, the energy propagation velocity is not in general normal to the wave fronts, although its component normal to them is the phase velocity. The second, mainly physical, strand of argument starts from the important and striking property of magneto-hydrodynamic waves in an incompressible, inviscid and perfectly conducting medium, of propagation in one direction only—a given disturbance propagates only along the magnetic lines of force which pass through it, and therefore suffers no attenuation with distance. There are cases of astrophysical importance where densities are so low that attenuation due to collisional effects—for example, electrical resistivity—should be negligible over relevant length scales. We therefore ask how far the effects of a non-collisional nature which are neglected in the simple theory, particularly compressibility and Hall current, would alter the unidirectional, attenuation-less propagation of the waves. These effects have been included previously in magneto-hydrodynamic wave theory, but the directional distribution of waves from a local source was not obtained. This problem explains the need for the mathematical theory just described, and gives a comprehensive illustration of its application.

Publisher

The Royal Society

Subject

General Engineering

Reference13 articles.

1. Alfven H. 1942

2. Alfven H. 1950

3. Ark;Astrom E.;Fys.,1951

4. Proc. Roy;Buchwald V. T.;Soc. A,1959

5. Cowling T. G. 1957 Magnetohydrodynamics. New York: Interscience.

Cited by 640 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3