A spin-wave theory of anisotropic antiferromagnetica

Author:

Abstract

This paper is a sequel to an earlier one (ter Haar & Lines 1962 referred to as A) in which we applied a molecular-field treatment to anisotropic antiferromagnetics. In the present paper we apply spin-wave theory to investigate the influence of anisotropy of nearest-neighbour interactions and of the occurrence of next-nearest-neighbour interactions on the stability of the types of order found in A. After a brief introduction, face-centred cubic antiferromagnetics are considered in the second section. We find that there is no type of f.c.c. order which is stable for nearest-neighbour isotropic exchange interactions only. For the case of type 1 order with all spins along the direction of the unique cubic axis the order is stabilized by a small amount of anisotropy in the nearest-neighbour interaction. This is the only f.c.c. order which we found to be stable for nearest-neighbour interactions only. The influence of the more-remote-neighbour interactions is probably small for this case. For the case of type 1 order with all spins perpendicular to the unique cubic axis, we find that this type of order is only stable, provided interactions more remote than the nearest-neighbour ones occur. As far as type 2 order is concerned, the case where the preferred direction of order is in one of the ferromagnetically ordered planes turned out to be too complicated to be treated, but the case where the preferred direction is perpendicular to the ferromagnetic planes and the isotropic case can be treated. The orders in the latter cases are stable, provided the next-nearest-neighbour interactions are not too weak. If they are too weak, type 3 A order is the stable one. Type 3A order with the spins oriented along the unique cubic axis is stable, provided there is a small amount of isotropic antiferromagnetic next-nearest-neighbour interaction present. Type 3A order with spins perpendicular to the unique cubic axis is stable only if we include second and third nearest-neighbour interactions of sufficient magnitude. For most of these cases we have computed the spin-wave ground-state energy and the average value in this ground state of the total sublattice spin-component along the preferred direction; this value should be close to its maximum for the spin-wave treatment to be reliable. We observe that for all orders considered here there is a general rule: the order is not stable, if it is possible to single out a plane in the structure for which the average interactions between atoms within the plane and those outside is zero. In §2 we discuss the body-centred tetragonal lattice. We find that type 1 order is stable, provided the isotropic next-nearest-neighbour exchange interaction is larger than the nearestneighbour exchange interaction. If their ratio is less than 0.5 the so-called rutile type diagonal order—or type 2 order—is stable whenever its existence is predicted by the molecular-field theory. In the latter case one must introduce four sets of spin-waves rather than the two sets occurring for the other types of order considered in the present paper. In the last section we consider antiferromagnetic resonance. We find that the resonance frequency observed for MnO agrees rather better with the exchange interaction deduced from susceptibility measurements than with the value of this interaction deduced from mixed-salt para-magnetic-resonance measurements. For the case of MnF 2 we find a resonance wavelength of about 0.95 mm as against the experimental wavelength of 1.15 mm. We finally predict resonance frequencies of 15.0 and 19.1 cm<super>-1</super> for (NH 4 ) 2 IrCl 6 and K 2 IrCl 6 if they should show type 1 order and of 10.6 and 13.5 cm<super>-1</super>, if the order should be type 3A.

Publisher

The Royal Society

Subject

General Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3