A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels

Author:

Mishra Piyush12,Navariya Sagar12,Gupta Priyanshi1,Singh Bhupendra Pratap34ORCID,Chopra Samridhi12,Shrivastava Swapnil1,Agrawal Ved Varun1ORCID

Affiliation:

1. CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India

2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

3. Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India

4. Department of Electro-Optical Engineering, National United University, Miao-Li-360, Taiwan, Republic of China

Abstract

This research paper presents an inventive technique to swiftly create microfluidic channels on distinct membrane papers, enabling colorimetric drug detection. Using a modified DIY RepRap 3D printer with a syringe pump, microfluidic channels (µPADs) are crafted on a flexible nylon-based substrate. This allows simultaneous detection of four common drugs with a single reagent. An optimized blend of polydimethylsiloxane (PDMS) dissolved in hexane is used to create hydrophobic channels on various filter papers. The PDMS-hexane mixture infiltrates the paper's pores, forming hydrophobic barriers that confine liquids within the channels. These barriers are cured on the printer's hot plate, controlling channel width and preventing spreading. Capillary action drives fluid along these paths without spreading. This novel approach provides a versatile solution for rapid microfluidic channel creation on membrane papers. The DIY RepRap 3D printer integration offers precise control and faster curing. The PDMS-hexane solution accurately forms hydrophobic barriers, containing liquids within desired channels. The resulting microfluidic system holds potential for portable, cost-effective drug detection and various sensing applications.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3