Modifying cellulose fibres with carbon dots: a promising approach for the development of antimicrobial fibres

Author:

Radha Remya1,Makhlouf Zinb1,Diab Rasha2,Al-Sayah Mohammad H.12ORCID

Affiliation:

1. Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah , Sharjah 26666, United Arab Emirates

2. Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah , Sharjah 26666, United Arab Emirates

Abstract

This study focuses on the development of antimicrobial fibres for use in medical and healthcare textile industries. Carbon dots (CDs) were designed with boronic acid groups for the attachment to cellulose fibres found in cotton textiles and to enhance their attachment to glycogens on bacterial surfaces. Boronic acid-based and curcumin-based CDs were prepared and characterized using various techniques, showing a nanoscale size and zeta potential values. The CDs inhibited the growth of both Staphylococcus epidermidis and Escherichia coli bacteria, with UV-activated CDs demonstrating improved antibacterial activity. The antimicrobial activity of the CDs was then tested, revealing strong adherence to cellulose paper fibres with no CD diffusion and potent inhibition of bacterial growth. Cytotoxicity assays on human cell lines showed no toxicity towards cells at concentrations of up to 100 µg ml −1 but exhibited increased toxicity at concentrations exceeding 1000 µg ml −1 . However, CD-modified cellulose paper fibres showed no toxicity against human cell lines, highlighting the antimicrobial properties of the CD-modified cellulose fibres are safe for human use. These findings show promising potential for applications in both industrial and clinical settings.

Funder

American University of Sharjah

Publisher

The Royal Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3