Evaporation induced acoustic emissions in microfluidic vessels

Author:

Dutta S.1,Bieling T. J.1,Verbiest G. J.1ORCID

Affiliation:

1. Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands

Abstract

Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.

Funder

4TU "Plantenna" research programme

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3