On modelling airborne infection risk

Author:

Drossinos Yannis1ORCID,Stilianakis Nikolaos I.23ORCID

Affiliation:

1. Thermal Hydraulics & Multiphase Flow Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Agia Paraskevi 15314, Greece

2. Joint Research Centre (JRC), European Commission, Ispra, VA 21027, Italy

3. Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany

Abstract

Airborne infection risk analysis is usually performed for enclosed spaces where susceptible individuals are exposed to infectious airborne respiratory droplets by inhalation. It is usually based on exponential, dose-response models of which a widely used variant is the Wells–Riley (WR) model. We revisit this infection-risk estimate and extend it to the population level. We use an epidemiological model where the mode of pathogen transmission, airborne or contact, is explicitly considered. We illustrate the link between epidemiological models and the WR and the Gammaitoni and Nucci models. We argue that airborne infection quanta are, up to an overall density, airborne infectious respiratory droplets modified by a parameter that depends on biological properties of the pathogen, physical properties of the droplet and behavioural properties of the individual. We calculate the time-dependent risk of being infected for two scenarios. We show how the epidemic infection risk depends on the viral latent period and the event time, the time infection occurs. Infection risk follows the dynamics of the infected population. As the latent period decreases, infection risk increases. The longer a susceptible is present in the epidemic, the higher its risk of infection for equal exposure time to the pathogen is.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3