Mechanisms of glycine formation in cold interstellar media: a theoretical study

Author:

Panajapo Pannipa1,Suwannakham Parichart1,Promma Phorntep1,Sagarik Kritsana1ORCID

Affiliation:

1. School of Chemistry, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand

Abstract

The possibility of the formation of glycine (Gly) from fundamental gas molecules in cold interstellar media was studied using quantum chemical methods, transition state theory and microcanonical molecular dynamics simulations with surface hopping dynamics (NVE-MDSH). This theoretical study emphasized five photochemical pathways in the lowest singlet-excited ( S 1 ) state, thermochemical processes after non-radiative S 1S 0 relaxations, and photo-to-thermal energy conversion in the NVE ensemble. The optimized reaction pathways suggested that to generate a reactive singlet dihydroxy carbene (HOCOH) intermediate, photochemical pathways involving the H 2 O…CO van der Waals and H 2 O−OC hydrogen bond precursors (Ch (1)_Step (1)) possess considerably lower energy barriers than the S 0 state pathways. The Gibbs free energy barriers (∆ G ǂ ) calculated after the non-radiative S 1 →S 0 relaxations indicated higher spontaneous temperatures ( T s ) for the formation of the HOCOH intermediate (Ch (1)_Step (1)) than for Gly formation (Ch (1)_Step (2) and Ch (4)). Although the termolecular reaction in Ch (4) possesses a low energy barrier, and is thermodynamically favourable, the high exothermic S 1 →S 0 relaxation energy leads to the separation of the weakly associated H 2 O…CH 2 NH…CO complex into single molecules. The NVE-MDSH results also confirmed that the molecular processes after the S 1 →S 0 relaxations are thermally selective, and because the non-radiative S 1 →S 0 relaxation temperatures are exceedingly higher than T s , the formation of Gly on consecutive reaction pathways is non-synergistic with low yields and several side products. Based on the theoretical results, photo-to-thermal control strategies to promote desirable photochemical products are proposed. They could be used as guidelines for future theoretical and experimental research on photochemical reactions.

Funder

National Science, Research, and Innovation Fund

Publisher

The Royal Society

Reference37 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3