Optofluidic passive parity-time-symmetric systems

Author:

Assogba Onanga Franck1ORCID,Chandrahalim Hengky1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA

Abstract

This research introduces a novel methodology of harnessing liquids to facilitate the realization of parity-time ( PT )-symmetric optical waveguides on highly integrated microscale platforms. Additionally, we propose a realistic and detailed fabrication process flow, demonstrating the practical feasibility of fabricating our optofluidic system, thereby bridging the gap between theoretical design and actual implementation. Extensive research has been conducted over the past two decades on PT -symmetric systems across various fields, given their potential to foster a new generation of compact, power-efficient sensors and signal processors with enhanced performance. Passive PT -symmetry in optics can be achieved by evanescently coupling two optical waveguides and incorporating an optically lossy material into one of the waveguides. The essential coupling distance between two optical waveguides in air is usually less than 500 nm for near-infrared wavelengths and under 100 nm for ultraviolet wavelengths. This necessitates the construction of the coupling region via expensive and time-consuming electron beam lithography, posing a significant manufacturing challenge for the mass production of PT -symmetric optical systems. We propose a solution to this fabrication challenge by introducing liquids capable of dynamic flow between optical waveguides. This technique allows the attainment of evanescent wave coupling with coupling gap dimensions compatible with standard photolithography processes. Consequently, this paves the way for the cost-effective, rapid and large-scale production of PT -symmetric optofluidic systems, applicable across a wide range of fields.

Funder

National Academies of Sciences, Engineering, and Medicine

U.S. Department of the Air Force

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3