Fe 3 O 4 nanoparticle-coated mushroom source biomaterial for Cr(VI) polluted liquid treatment and mechanism research

Author:

Wang Can,Liu Huakang,Liu Zizhao,Gao Yufeng,Wu Bin,Xu HengORCID

Abstract

Agrocybe cylindracea substrate–Fe 3 O 4 (ACS–Fe 3 O 4 ), a Fe 3 O 4 nanoparticle-coated biomaterial derived from agriculture waste from mushroom cultivation, was developed to remove hexavalent chromium (Cr(VI)) from liquid. After modification, material surface became uneven with polyporous and crinkly structure which improved Cr-accommodation ability in a sound manner. Optimized by the Taguchi method, Cr(VI) removal percentage was up to 73.88 at 240 min, 40°C, pH 3, Cr(VI) concentration 200 mg l −1 , dosage 12 g l −1 , rpm 200. The efficient Cr(VI) removal was due to the combined effect of adsorption and redox. In addition, verification test using tannery wastewater, with removal percentage of Cr(VI) and total Cr reaching 98.35 and 95.6, provided further evidence for the efficiency and feasibility of ACS–Fe 3 O 4 . The effect of storage time of the material on Cr(VI) removal was small, which enhanced its value in practical application. Results indicated that metal removal was mainly influenced by solution concentration, adsorbent dosage and treatment time. The experimental data obtained were successfully fitted with the Langmuir isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that ACS–Fe 3 O 4 as novel material derived from waste, with long-term stability, could be applied for heavy metal removal from wastewater and waste cycling.

Funder

the Science and Technology Supportive Project of Sichuan Province, China

Science and Technology Supportive Project of Chengdu

NSFC

Publisher

The Royal Society

Subject

Multidisciplinary

Reference41 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3