Orientation-dependent structural and photocatalytic properties of LaCoO 3 epitaxial nano-thin films

Author:

Zhang Yan-ping12,Liu Hai-feng2ORCID,Hu Hai-long2,Xie Rui-shi2,Ma Guo-hua2,Huo Ji-chuan2,Wang Hai-bin3

Affiliation:

1. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China

3. School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621010, China

Abstract

LaCoO 3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO 3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO 3 films are epitaxially grown in accordance with the orientation of LaAlO 3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO 6 octahedron, the mean Co–O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO 3 , and the (100) oriented LaCoO 3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO 3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co 3+ and Co–O binding energy. The increase in the mean Co–O bond length will decrease the crystal field splitting energy of Co 3+ and Co–O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO 3 .

Funder

The Scientific and Technological Innovation Team Foundation of Southwest University of Science and Technology

The Scientific Research Fund of Education Department of Sichuan Province

The National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3