Mechanistic insights into molecular evolution of species-specific differential glycosaminoglycan binding surfaces in growth-related oncogene chemokines

Author:

Gulati Khushboo1,Jamsandekar Minal1,Poluri Krishna Mohan12ORCID

Affiliation:

1. Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India

2. Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India

Abstract

Chemokines are chemotactic cytokines involved in leucocyte trafficking to infected tissue. Growth-related oncogene (GRO) chemokines namely CXCL1, CXCL2 and CXCL3 are neutrophil activating chemokines sharing a conserved three-dimensional structure, but encompassing functional diversity due to gene duplication and evolutionary events. However, the evolutionary mechanisms including selection pressures involved in diversification of GRO genes have not yet been characterized. Here, we performed comprehensive evolutionary analysis of GRO genes among different mammalian species. Phylogenetic analysis illustrated a species-specific evolution pattern. Selection analysis evidenced that these genes have undergone concerted evolution. Seventeen positively selected sites were obtained, although the majority of the protein is under purifying selection. Interestingly, these positively selected sites are more concentrated on the C-terminal/glycosaminoglycan (GAG) binding and dimerization segment compared to receptor binding domain. Substitution rate analysis confirmed the C-terminal domain of GRO genes as the highest substituted segment. Further, structural analysis established that the nucleotide alterations in the GAG binding domain are the source of surface charge modulation, thus generating the differential GAG binding surfaces and multiple binding sites as per evolutionary pressure, although the helical surface is primordial for GAG binding. Indeed, such variable electrostatic surfaces are crucial to regulate chemokine gradient formation during a host's defence against pathogens and also explain the significance of chemokine promiscuity.

Funder

Department of Biotechnology , Ministry of Science and Technology

Science and Engineering Research Board

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3