A plug-in electrophoresis microchip with PCB electrodes for contactless conductivity detection

Author:

Yang Mingpeng12,Huang Zhe12,You Hui1ORCID

Affiliation:

1. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China

2. University of Science and Technology of China, USTC, Hefei 230026, Anhui, People's Republic of China

Abstract

A plug-in electrophoresis microchip for large-scale use aimed at improving maintainability with low fabrication and maintenance costs is proposed in this paper. The plug-in microchip improves the maintainability of a device because the damaged microchannel layer can be changed without needing to cut off the circuit wires in the detection component. Obviously, the plug-in structure reduces waste compared with earlier microchips; at present the whole microchip has to be discarded, including the electrode layer and the microchannel layer. The fabrication cost was reduced as far as possible by adopting a steel template and printed circuit board electrodes that avoided the complex photolithography, metal deposition and sputtering processes. The detection performance of our microchip was assessed by electrophoresis experiments. The results showed an acceptable gradient and stable detection performance. The effect of the installation shift between the microchannel layer and the electrode layer brought about by the plug-in structure was also evaluated. The results indicated that, as long as the shift was controlled within a reasonable scope, its effect on the detection performance was acceptable. The plug-in microchip described in this paper represents a new train of thought for the large-scale use and design of portable instruments with electrophoresis microchips in the future.

Funder

Science and technology research project of Anhui Province, China

National Key Technology Research and Development Program of the Ministry of Science and Technology of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3