Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour

Author:

Walton Emily1,Casey Christy2,Mitsch Jurgen13,Vázquez-Diosdado Jorge A.1,Yan Juan14,Dottorini Tania13,Ellis Keith A.5,Winterlich Anthony2,Kaler Jasmeet1ORCID

Affiliation:

1. School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK

2. DXC Technology, Ballybrit Business Park, Galway City H91 WP08, Ireland

3. Advanced Data Analysis Centre (ADAC), School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK

4. School of Computer Science, University of Manchester, Manchester M13 9PL, UK

5. Internet of Things Systems Research, Intel Labs, Leixlip W23 CX68, Ireland

Abstract

Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F -score 91%–97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%–93% and F -score 88%–95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs.

Funder

Innovate UK

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3