A mathematical understanding of how cytoplasmic dynein walks on microtubules

Author:

Trott L.12,Hafezparast M.3,Madzvamuse A.1ORCID

Affiliation:

1. Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK

2. School of Life Sciences, University of Sussex, Brighton BN1 9QH, UK

3. School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK

Abstract

Cytoplasmic dynein 1 (hereafter referred to simply as dynein) is a dimeric motor protein that walks and transports intracellular cargos towards the minus end of microtubules. In this article, we formulate, based on physical principles, a mechanical model to describe the stepping behaviour of cytoplasmic dynein walking on microtubules from the cell membrane towards the nucleus. Unlike previous studies on physical models of this nature, we base our formulation on the whole structure of dynein to include the temporal dynamics of the individual subunits such as the cargo (for example, an endosome, vesicle or bead), two rings of six ATPase domains associated with diverse cellular activities (AAA+ rings) and the microtubule-binding domains which allow dynein to bind to microtubules. This mathematical framework allows us to examine experimental observations on dynein across a wide range of different species, as well as being able to make predictions on the temporal behaviour of the individual components of dynein not currently experimentally measured. Furthermore, we extend the model framework to include backward stepping, variable step size and dwelling. The power of our model is in its predictive nature; first it reflects recent experimental observations that dynein walks on microtubules using a weakly coordinated stepping pattern with predominantly not passing steps. Second, the model predicts that interhead coordination in the ATP cycle of cytoplasmic dynein is important in order to obtain the alternating stepping patterns and long run lengths seen in experiments.

Funder

Leverhulme Trust Research Project

Engineering and Physical Sciences Research Council

European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement

Royal Society

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3