Vibrational spectroscopy of metal methanesulfonates: M = Na, Cs, Cu, Ag, Cd

Author:

Parker Stewart F.ORCID,Zhong LishaORCID

Abstract

In this work, we have used a combination of vibrational spectroscopy (infrared, Raman and inelastic neutron scattering) and periodic density functional theory to investigate six metal methanesulfonate compounds that exhibit four different modes of complexation of the methanesulfonate ion: ionic, monodentate, bidentate and pentadentate. We found that the transition energies of the modes associated with the methyl group (C–H stretches and deformations, methyl rock and torsion) are essentially independent of the mode of coordination. The SO 3 modes in the Raman spectra also show little variation. In the infrared spectra, there is a clear distinction between ionic (i.e. not coordinated) and coordinated forms of the methanesulfonate ion. This is manifested as a splitting of the asymmetric S–O stretch modes of the SO 3 moiety. Unfortunately, no further differentiation between the various modes of coordination: unidentate, bidentate etc … is possible with the compounds examined. While it is likely that such a distinction could be made, this will require a much larger dataset of compounds for which both structural and spectroscopic data are available than that available here.

Funder

Science and Technology Facilities Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3