Coordinate conditions in a Riemannian space for coordinates based on a subspace

Author:

Abstract

It is customary to specify the geometry of a Riemannian N -space by writing down a quadratic line-element, the coefficients being ½ N ( N + 1) functions of the coordinates. But since there is an N -fold arbitrariness in the choice of coordinates, there is an N -fold arbitrariness in the metric tensor, and one expresses this by saying that the metric tensor satisfies N coordinate conditions, so that there are essentially only ½ N ( N - 1) components. If the coordinate system is made definite by constructing it according to some geometrical plan, the coordinate conditions may be made explict; their form is well known for Riemannian coordinates (based on geodesics drawn out from a point) and for Gaussian coordinates (based on geodesics drawn orthogonal to an ( N - 1)-space), and in some other cases. Our purpose is to present in a single argument the coordinate conditions for coordinates based on geodesics drawn orthogonal to a subspace of M dimensions ( M = 0, 1, ..., N - 1). These conditions are very simple in form. They are used to express the metric tensor in terms of integrals of the linear part L ijkm of the covariant Riemann tensor. If in these integrals L ijkm is replaced by any other set of functions E ijkm having the same symmetries as L ijkm , then L ijkm and E ijkm differ only by terms evaluated on the subspace. All the results are applicable to the space-time of general relativity if one puts N = 4.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference4 articles.

1. B o y le P . P . 1969 P h .D . T h esis T r in ity C ollege D u b lin .

2. P lo r id e s P . S. M cC rea J . & S y n g e J . L . 1966 Proc. R o y . Soc. L o nd. A 292 1.

3. S y n g e J . L . 1964 R e la t IV i ty : the general theory. A m s te rd a m : X o rth -H o Ila n d P u b lish in g Co.

4. V e b le n O . 1927 I n v a r ia n ts o f q ua dratic differen tia l formsCam bridge U n IV e rsity P ress.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Horizon Molecules and Entropy in Causal Sets;Handbook of Quantum Gravity;2023-09-10

2. Horizon molecules in causal set theory;Physical Review D;2019-12-04

3. A cut-off tubular geometry of loop space;Reviews in Mathematical Physics;2017-03-14

4. ALL ORDER COVARIANT TUBULAR EXPANSION;Reviews in Mathematical Physics;2014-01-13

5. Multi-step Fermi normal coordinates;Classical and Quantum Gravity;2013-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3