Vacancies in close-packed polyvalent metals

Author:

Abstract

The difference in total energy of a crystal with and without a vacancy involves essentially three terms: (i) The change in the one-electron eigenvalues due to scattering of conduction electrons off the vacant site. (ii) The self-energy of the displaced charge. (iii) The change in exchange and correlation energies of the electron gas. We have investigated the contributions (i) to (iii) for Cu, Mg, Al and Pb. The change in the one-electron eigenvalues is shown to be insensitive to the Bloch wave character of the wave functions and also to the choice of the repulsive potential V ( r ) representing the effect of the vacancy on the conduction electrons. There is thus no difficulty in evaluating contribution (i) for metals of different valencies. In contrast, the self-energy of the displaced charge is shown to depend very sensitively on the choice of V ( r ), and it is, therefore, essential to make the calculation self-consistent. This we have done by properly screening the negative of the point ion fields for Cu + to Pb 4+ . The radial wave functions and phase shifts for the low order partial waves have been evaluated, and self-consistent displaced charges obtained. The exchange energy has been estimated from a Dirac–Slater type of approximation and is again not sensitive to the detailed form of the displaced charge, while the change in correlation energy is found to be unimportant in determining the vacancy formation energy. The formation energies for the polyvalent metals are in satisfactory agreement with experiment. Some results for excess resistivities due to vacancies in metals are also presented. Here, in contrast to the calculation of the formation energies, it is essential to account for the Bloch wave character of the electron waves scattered by the vacancy. It is also proposed that the displaced charge round a vacancy may be a useful building block (or pseudoatom) for forming the crystal density.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3