Thermal effects accompanying spontaneous ignition in gases. IV. The decomposition of diethyl peroxide in a cylindrical vessel and the effect of diluents on self-heating

Author:

Abstract

The investigation (see parts I to III) of the spontaneous ignition of gaseous diethyl peroxide as a thermal explosion is concluded by a series of experiments mainly in a cylindrical vessel, and including diluted mixtures. A very fine thermocouple (25 µ m diameter) has been used to probe the temperature distributions between the axis and the wall both in systems reacting subcritically and in systems on the verge of ignition. A multijunction thermocouple has also been employed to obtain instantaneous readings of distributed temperature in a spherical vessel. It is found that self heating is always present. In accordance with a conductive theory of heat losses, temperatures are not uniform throughout the reactant, but depend on the fractional distance ( z = r / r 0 ) from the vessel axis, being greatest at the axis and least at the walls. For the cylinder, the form of the profiles expected in a stationary state is ( T - T a )/( RT a 2 / E ) = 2 ln (1 + G )/(1 + Gz 2 ) and good agreement is found between theory and experiment. (The significance of G is discussed in the text.) This agreement, the symmetry of the profiles, and the absence of any temperature step at the walls confirm the absence of convection at the pressures concerned. A critical centre temperature rise exists above which ignition is inevitable. The greatest value of this increment is 23.3 K ; for simple theory, the predicted value is 19 K (1.39 RT a 2 / E ). Any temperature dependence of this critical increment lies beyond the discrimination of the present apparatus. Similar agreement is found between ‘measured’ and theoretically expected values for Frank-Kamenetskii’s δ . At criticality, the measured values average 2.25 against a theoretical value (uncorrected for finite vessel size or finite reaction rate) of 2 exactly. ‘Measured’ values for δ in subcritical systems are also in satisfactory accord with expectation. Other ‘indirect’ tests of thermal theory are also satisfied. Thus the curvature of the critical pressure limit (boundary on the pT diagram between explosive and slow reaction) exactly corresponds to the activation energy measured in isothermal decomposition. Similar temperature-position profiles are found in diluted mixtures below criticality, and although critical explosion pressures depend on the degree of dilution, the critical temperature rise for ignition does not. The average value found is 19.0 K. Nor does the critical temperature gradient at the vessel boundary vary from the value ( — 2 exactly) predicted for any dilution of vessel geometry. There are the same influences on criticality as in the spherical vessel: in accord with stationary state conductive theory, thermal conductivity is the principal factor but its influence is distorted to varying degrees, first by the occurrence of dynamic heating accompanying gas entry, secondly by the rate of dissipation of this heating, which is governed by the thermal diffusivity, and thirdly by the departures from stationary state behaviour largely governed by the specific heat of the diluent. These influences explain an otherwise erratic dependence of critical ignition pressures on thermal conductivity.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3