Kinetics of formation and removal of atomic halogen ions X - by HX + e ⇄ H + X - in atmospheric pressure flames for chlorine, bromine and iodine

Author:

Abstract

The ions present in a variety of flames have been studied by continuously pumping a small fraction of the hot gases through a small hole and expanding it supersonically inside a conical duct to the low pressures required for mass spectrometric analysis. We conclude from measurements of ion abundances that if a halogen X is added to a flame containing free electrons, then the negative ion X - is produced by dissociative attachment in the forward step of HX + e - ⇄X - +H. Reaction (I) is found to be rapid enough to be equilibrated in the burnt gases. This method of sampling imposes a rapid drop in temperature and pressure on the gas as it expands and typically there is a fall of roughly 1400 K and 99 kPa in the first 10 -7 s. An equilibrium such as (I) relaxes to some extent to these falling temperatures, but at a distance of around two orifice diameters inside the expansion no further shift of (1) is possible. A comparison of a measured [X - ] with one computed on the basis of (I) being equilibrated in the flame gives a quantitative measure of the extent to which the reaction shifts during sampling. In addition, the flame sample is often also cooled as it passes through boundary layers immediately before entering the instrument. We conclude however that this effect is of little consequence, provided a large enough sampling hole (diameter > 0.15 mm) is used. In this case the measured shift of (I) can be compared with values of it predicted on the basis of guessed velocity constants for the backward process in (I) and also a one-dimensional adiabatic treatment of the expansion. This comparison provides values for the rate constants and of both steps in (I). The magnitudes of k -1 for the back reaction over the temperature range 1800—2650 K are 7 x 10 -10 , 8 x 10 -10 and 10 x 10 -10 ml molecule -1 s -1 for chlorine, bromine and iodine, respectively (with uncertainties corresponding to factors of 1.6, 1.8 and 2.0) and accordingly independent of temperature. The forward dissociative attachment of electrons has k 1 such that its activation energy is the exothermicity of the reaction. The cross-section (nor2) for this direction is large and the same for each halogen, being 1.5 x 10 -18 m 2 . From the reaction X+ e - + M->X - + M not apparently occurring (M being any molecule acting as a chaperon) in flames, we conclude that its rate coefficient is less than 3 x 10 -29 ml 2 molecule -2 s -1 for these three halogens at temperatures of around 2000 K.

Publisher

The Royal Society

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3