The mechanism of spark breakdown in nitrogen, oxygen and sulphur hexafluoride

Author:

Abstract

An image converter and a 4-stage image intensifier have been used to investigate the development of spark breakdown in a 3-cm, uniform-field, gas-discharge gap. The growth of ionization, initiated by a burst of electrons a t the cathode, has been observed for overvoltages up to 25 % in nitrogen, oxygen and sulphur hexafluoride a t pressures in the range 13 to 40kPa (100 to 300 Torr). In nitrogen, time resolved shutter and streak records have been obtained which demonstrate, that, at low overvoltages, breakdown is preceded by the formation of a diffuse glow discharge whereas, at voltages well in excess of the static breakdown voltage, the arc discharge is formed directly in the track of the initial electron avalanche, as a result of space-charge distortion of the applied electric field. This change with overvoltage has previously been ascribed to a transition from a Townsend to a streamer breakdown mechanism; the present results, however, do not entirely support this view. In oxygen and sulphur hexafluoride, no such change in the form of ionization development has been observed and it is concluded from the evidence obtained that, even a t very small overvoltages, the development of ionization is strongly affected by space-charge distortion of the applied field. Photographs obtained in sulphur hexafluoride have been correlated with measured formative-time-lag data showing the time-lag-free region reported previously by Kuffel. Some conclusions have been drawn regarding the breakdown mechanism under these conditions.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametrization of Fluid Models for Electrical Breakdown of Nitrogen at Atmospheric Pressure;Plasma;2024-09-10

2. Numerical Modeling of the DC Breakdown of a Sphere Gap due to a Weakly Nonuniform Electric Field;2024 IEEE 5th International Conference on Dielectrics (ICD);2024-06-30

3. Field Dependent Behavior of Air and Other Gaseous Dielectrics;High Voltage and Electrical Insulation Engineering, Second Edition;2022-03-15

4. Streamer breakdown: cathode spot formation, Trichel pulses and cathode-sheath instabilities;Plasma Sources Science and Technology;2020-01-22

5. Distributions of the formative time delay in argon and synthetic air at low pressure;IEEE Transactions on Dielectrics and Electrical Insulation;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3