On the modulation of water waves in the neighbourhood of kh ≈ 1.363

Author:

Abstract

In 1967, T. Brooke Benjamin showed that periodic wave-trains on the surface of water could be unstable. If the undisturbed depth is h , and k is the wavenumber of the fundamental, then the Stokes wave is unstable if kh ≥ σ 0 , where σ 0 ≈ 1.363. The instability is provided by the growth of waves with a wavenumber close to k . This result is associated with an almost resonant quartet wave interaction and can be obtained by examining the cubic nonlinearity in the nonlinear Schrodinger equation for the modulation of harmonic water waves: this term vanishes at kh = cr0. In this paper the multiple-scales technique is adapted in order to derive the appropriate modulation equation for the amplitude of the fundamental when kh is near to σ 0 . The resulting equation takes the form i A T - a 1 A ζζ - a 2 A | A | 2 + a 3 A | A | 4 + i( a 4 | A | 2 A ζ - a 5 A (| A | 2 ) ζ ) - a 6 T = 0 where ψ ζ = | A | 2 , and the a i are real numbers. [Coefficients a 3 - a 6 are given on kh ≈ 1.363 only.] This equation is uniformly valid in that it reduces to the classical non-linear Schrödinger equation in the appropriate limit and is correct when a 2 = 0, i.e. at kh = σ 0 . The equation is used to examine the stability of the Stokes wave and the new inequality for stability is derived: this now depends on the wave amplitude. If the wave is unstable then it is expected that soli to ns will be produced: the simplest form of soliton is therefore examined by constructing the corresponding ordinary differential equation. Some comments are made concerning the phase-plane of this equation, but more analytical details are extracted by treating the new terms as perturbations of the classical Schrodinger soliton. It is shown that the soliton is both flatter (symmetrically) and skewed forward, although the skewing eventually gives way to an oscillation above the mean level.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3