The direct measurement of the strength of metals on a sub-micrometre scale

Author:

Abstract

Four types of experiment have been carried out to investigate the strength properties of annealed metals when the stressed volume is small enough to lie between the existing dis­locations in a crystal. These are (i) indentation experiments of a soft metal surface with a hard stylus, (ii) blunting of a soft metal tip against a hard surface, (iii) compression of individual metal crystals, and (iv) bending of thin filaments. The experiments were performed in either a scanning electron microscope or a transmission electron microscope with the use of micro­-loading devices capable of applying loads down to 0.1 mgf (10 -6 N). In the blunting experi­ments carried out in the transmission electron microscope it was possible to observe disloca­tions directly in the tip during loading. The majority of the experiments were carried out on gold. The results showed that strengths similar to the theoretical value can be achieved but in the experiments in which the stress was applied at an external surface (experiments (i), (ii) and (iii) above) the strength was strongly dependent on the condition of the interface. The strength that could be sustained by a region of perfect crystal in contact with a hard metallic surface was about five times less than the theoretical strength. These relatively low strengths are probably due to interfacial tractions producing very high local stresses. The introduction of some polymeric or amorphous layer at the interface raised the strength to the theoretical level. It is suggested that this is due to the fact that the polymeric layer removes most of the stress concentration. Transmission electron microscopy through aluminium tips during blunting showed that plastic deformation could take place at quite low stresses in a dislocation-free crystal with no dislocations remaining in the crystal during the early stages of blunting. Dislocation build up only occurred in the later stages of deformation. The yield stress was found to decrease with plastic strain in all the experiments, and could fall to values which were not substantially greater than those observed in large specimens. Comparison of the compressive strength of two spherical gold crystals, 0.5 μ m and 2 mm in diameter respectively, showed that the small crystal was only twice as strong as the large crystal after they had both undergone equal amounts of compression. The maximum strengths observed for gold ( μ /20) are greater than those calculated by Kelly (1966) ( ca . μ /50) and are nearer the value deduced by Brown & Woolhouse (1970) for the generation of dislocations around precipitate particles in alloys. The low strengths observed on deformed crystals are considered in the context of dislocation generation in small volumes and it is concluded that although a source mechanism of the Frank–Read type may be able to operate on this scale, some other source mechanism may also exist.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference30 articles.

1. Brenner S. S. 1958 Growth W iley. andperfection of crystals p. 157. New York and London: John

2. Brown L. M. & Woolhouse G. R. 1970 Phil. M ag. 21 329.

3. Frank F. C. 1950 Sym posium on plastic deformation of crystalline solids p. 89. Pittsburgh: Carnegie Institute of Technology.

4. Frenkel J. 1926

5. Friedel J. 1961 Z.Phys. 37 572.

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strain Gradient Plasticity Length Scales;Comprehensive Structural Integrity;2023

2. Pop-ins in Nanoindentations - the Initial Yield Point;INT J MATER RES;2022

3. Non-conventional Small-Scale Mechanical Testing of Materials;Journal of the Indian Institute of Science;2022-01

4. Exploring the origins of the indentation size effect at submicron scales;Proceedings of the National Academy of Sciences;2021-07-23

5. Metalloid gold clusters – past, current and future aspects;Chemical Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3