Combustion in heat exchangers

Author:

Abstract

The ranges of flow for which flames can stably be burnt in combustors based on extensive heat recirculation between products and reactants are examined in terms of the heat exchanger characteristics. This is important because, no matter how desirable it may be to burn poor fuels and mixtures of very low heat content efficiently, there are many applications for which the scheme would be attractive only for reasonably large throughputs and rates of energy release. A simple general theory based on the observed constant reaction temperature is shown to predict correctly the shape of the empirical curves for mixtures outside the flammability limits. Numerical correlations are obtained for a more detailed analysis of the very efficient double-spiral geometry. The results are compared with the theoretical maximum heat release rates per unit volume of flames in normally flammable mixtures. It is shown that mixtures containing only one fifth of the heat content at the normal limit of flammability in practice yield heat release rates comparable to the theoretical maximum for normal flames within the flammable range; the theoretical maximum for stoichiometric methane-air mixture should be attainable at little more than half the limit of flammability.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference6 articles.

1. B aird M. H . I. McRae W . Rum ford F . & Slessor C. G. M. 1957 Chem. Engng 7 112*

2. Buonaparte R . A. & Troupe R. A. 1970 4th In t. Heat Transfer Conf. (Paris-Versailles)* paper H .E . 2.5 vol. 1.

3. The combustion of methane at high temperatures

4. Chem;Coons K .;Engng Prog.,1947

5. Haigh C. P . & Chojnowski B. 1975

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3