Rotationally inelastic collisions of orbitally degenerate molecules; maser action in OH and CH

Author:

Abstract

The theory of rotationally inelastic collisions between orbitally degenerate diatomic molecules and open-shell atoms is developed. Because of the orbital degeneracy two or more electronic potential energy surfaces are involved. Matrix elements of the interaction Hamiltonian are given, hyperfine coupling in the diatomic molecule also being included. From these it is apparent th at the parity of the initial Λ -doublet level will influence the inelastic scattering cross section for poles of interaction λ such that λ ≥ 2 Λ .An expression is developed for state-to-state cross sections using the restricted distorted wave Born approximation. A set of branching coefficients is defined which allows the representation of the parity dependence of the cross section in a simple parametric form. The theory is applied to collisional pumping as an excitation mechanism for interstellar maser action of OH and CH through the inversion of Λ -doublet populations. H atoms, H 2 , He, H + and H + 3 are considered as collision partners. Branching coefficients are tabulated for a variety of excitations from the rotational ground states. The sense of the parity dependence of the cross sections arises from the gross features of the interaction potential at medium and long range, and can be deduced using approximate theoretical surfaces or empirical models. An analogy is drawn with the experimental rates of rotational energy transfer in the closely related system H + NH 2 (Ã, 2 A 1 ), which are ca. 10 -9 cm 3 s -1 , and which have been successfully interpreted using the distorted wave Born approximation. These results are used to give qualitative predictions of population inversion in the Λ -doublets of OH, OD and CH in interstellar clouds. We show th at the ground J = 1 ½ doublet, and excited doublets of the F 1 manifold, of OH and OD will be inverted following collisions with H, H 2 and He. The J = 1/2 doublet of the F 2 manifold of OH and OD will be inverted by collisions with the ions H + and H + 3 . In CH low temperature collisions with H atoms will result in inversion of the ground J = 1 ½ doublet. Collisions with H 2 and He at low temperature result in cooling of the doublet. Implications for maser action are briefly discussed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3