Temperature profiles in endothermic and exothermic reactions and the interpretation of experimental rate data

Author:

Abstract

Any endothermic or exothermic reaction is accompanied by self-cooling or self-heating. In reacting systems in which heat transfer is controlled by conduction, non-uniform temperature-position profiles are established. Examples of this situation are the exothermic decomposition of gaseous diethyl peroxide and the endothermic decomposition of nitrosyl chloride at low pressures (when convection is unimportant). In kinetic studies, allowance must be made for the non-uniform temperature to derive accurate isothermal velocity constants and Arrhenius parameters. In the present paper, the necessary corrections have been derived for a reactant in the steady state whose reaction rate varies exponentially with temperature and in which the temperature excess varies from point to point, being zero at the boundary (Frank-Kamenetskii’s conditions). The geometries considered are the slab, cylinder and sphere. The temperature gradient at the surface in the steady state ( Г ) occupies a key position, and this is exploited to find the correction factor required to convert 'observed’ rate constants to isothermal conditions, and thence to correct ‘observed’ activation energies and pre-exponential factors. The correction factor is found to be simply related to Frank- Kamenetskii’s δ (a dimensionless measure of heat-release rate). A similar analysis is given for systems hotter or cooler than their surroundings but uniform in temperature—such as well stirred fluid systems or small solid crystals (Semenov’s conditions). In these circumstances, systems of arbitrary geometry may be studied, and no approximation need be made to the Arrhenius function. For either type of boundary condition, uncorrected activation energies are overestimates in exothermic reactions and underestimates in endothermic reactions. Explicit relations are derived for making corrections. Boundary conditions intermediate between the two extremes investigated can also be treated though the resulting expressions are more cumbersome. In an appendix, an alternative ‘experimental’ approach is made to the elimination of errors from measured reaction velocities. This approach identifies the measured velocities with a temperature intermediate between those at centre and surface. The optimum choice, which weights the central and surface temperatures in the ratios 2:1 (slab), 1:1 (cylinder) and 2:3 (sphere), gives exactly correct results for the cylinder and acceptable precision for the slab and sphere even to within 5 K of the explosion limit. Other correction methods are also discussed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference26 articles.

1. Ashmore P. G. Tyler B. J. & W esley T. A. B. 1967 Eleventh Symposium (Int.) on Combustion p. 1133. Pittsburgh: Combustion Institute.

2. Dokl. Akad. Nauk;Barzykin V. V.;SSSR,1958

3. J . chem;Benson S. W.;Phys.,1954

4. Carslaw H . S. & Jaeger J. C. 1959 Conduction of heat in solids (2nd ed.) §15.7. Oxford University Press.

5. J .chem;Chambr;Phys.,1952

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cool Cross-Linking;Cornea;2021-06-29

2. References;Lees' Loss Prevention in the Process Industries;2012

3. Digital simulation of thermal reactions;Applied Mathematics and Computation;2011-10

4. Convective stability of the horizontal reacting liquid layer in the presence of various complicating factors;International Journal of Heat and Mass Transfer;1992-05

5. Chemistry and combustion;Symposium (International) on Combustion;1991-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3