Abstract
Kelland has solved a restricted ice-type model on the triangular lattice. Here it is shown that this is equivalent to a restricted six-vertex model on the Kagomé lattice, and to the g-state triangular (or hexagonal) Potts model at its transition temperature
T
c
. This enables us to obtain the free energy, internal energy and latent heat of the Potts model at
T
c
. The relation of this work to the operator method of Temperley and Lieb is explained, and this method is used to consider a generalized triangular Potts model which includes a three-site interaction on alternate triangles. It is shown that this model is self-dual. The results for the bond percolation problem on the triangular lattice give an excellent verification of series expansion predictions.
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献