A quantum electrodynamical theory of differential scattering based on a model with two chromophores I. Differential Rayleigh scattering of circularly polarized light

Author:

Abstract

Chiral systems can scatter circularly polarized photons at rates dependent on the handedness of the incident radiation. Differential intensities of Raman scattering by optically active organic molecules have been observed recently. The present work deals with the theory of both Rayleigh and Raman differential scattering by using quantum electrodynamics. The calculations of differential intensities are based on a two-chromophore model in which the chromophores, assumed to be achiral in isolation, become optically active due to their dissymmetric arrangement. Results are reported for both ‘in-plane’ and ‘out-of-plane’ polarizations of the scattered radiation. They apply to an arbitrary scattering geometry and group separation. The limiting near- and far-zone behaviour is analysed in detail. In this paper (part I), the basic theory common to Rayleigh and Raman differential scattering is presented and is then applied to the Rayleigh process. The application to the Raman process is given in part II. In the Rayleigh case, the dominant contribution to the differential effect arises from interference of second-order probability amplitudes. This term varies linearly with the inter-chromophore separation in the near-zone, but inversely in the far-zone. Higher-order corrections to the differential intensities involve coupling between the chromophores; the leading correction, involving the interference of the second- and fourth-order amplitudes, has been computed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3