Flame stabilization by plasma jets

Author:

Abstract

The possibility of increasing flame reaction rates, stability and hence the throughput of chemical energy achievable by the addition of a small proportion of electrical power is stuided. The power is added to a subsidiary stream of different gases by a magnetically rotated plasma jet. Rates of rotation of the order 10 5 rev/min contribute to uniform heating and mixing with the very much larger main stream flow (up to blow-out) of methane + air mixtures. The products are sampled by a traversing micro-probe and analysed. Quite small additions of electrical power (e. g. 10% of the chemical energy flux—equivalent to an increase of approx. 116 °C in final temperature) produce large increases in throughput— almost 700 % with N 2 plus argon as the carrier gas. This compares with about 50 % predicted for a perfectly stirred system on the basis of measured global kinetics. Even the effect of argon alone, as the carrier gas, cannot be accounted for by such predictions. Radicals known to be important in flame propagation, such as OH, H and O were deliberately produced by including H 2 O, O 2 and CH 4 in the carrier stream . These were an improvement over argon alone but none appreciably exceeded N 2 in effectiveness. The conclusion is that a limited amount of electrical power used to stabilize a large throughput of flame reactants is most effective if employed to generate energetic and long-lived molecular fragments by imparting it in high concentration to a species of large dissociation energy which is capable of producing, subsequently, radicals important in flame propagation. The practical implications may be important, e. g. for stabilizing large throughputs in jet propulsion.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference7 articles.

1. Chen D. C. Lawton J. & Weinberg F . J. 1965 Tenth Symposium ( . on Combustion p. 743. The Combustion Institute.

2. ASME Report no. 61-WA-251 and Pure appl;Karlovitz B.;Chem.,1962

3. Flame-Arc Combination

4. Lawton J. & Weinberg F. J. 1969 Electrical aspects of combustion. Oxford: Clarendon Press.

5. Ind;Longwell J. P.;Engng Chem.,1955

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3