Experimental evidence for trapped exciton states in liquid rare gases

Author:

Abstract

In connexion with studies of the electronic structure of disordered systems, we enquire whether there exist exciton states in simple liquids. We report the results of a vacuum ultraviolet spectroscopic study of liquid argon and of liquid krypton doped with xenon. Experimental evidence was obtained for Wannier-Mott type impurity states in liquids which have no parentage in the excited states of the isolated atoms constituting the dense fluid. The absorption spectra of the doped liquid rare gases were monitored in the region 160 to 120 nm. The following experimental results are reported: (a) In the Xe/Ar liquid two absorption bands corresponding to the 1 S 03 P 1 and to the 1 S 01 P 1 transitions (or alternatively to the n = 1 Wannier states) were identified at 141 nm (8.80eV)† and at 123nm (10.1 eV). An additional line was observed at 127 nm (9.76eV). (b) In the Xe/Kr liquid three absorption bands were observed at 144.5 nm (8.59 eV), 125.5 nm (9.89 eV) and 129 nm (9.6 eV). (c) The absorption spectra of the doped liquids were compared with the spectra of 1 cm thick doped solid rare-gas crystals. From these results we conclude that: (a) The 127 nm (9.76 eV) band in the Xe/Ar liquid system and the 129 nm (9.61 eV) band in the Xe/Kr liquid system cannot be attributed to a perturbed ‘atomic’ state and are assigned to the n = 2 Wannier state in the liquid. (b) Line broadening of exciton states in the liquid can be accounted for by a simple scattering model. (c) Preliminary information on band gaps in liquid rare gases were obtained from the spectroscopic data. (d) The effect of liquid-solid phase transition on the line broadening of exciton states is consistent with electron mobility data in these systems.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the enhancement of scintillation light in xenon-doped liquid argon;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-01

2. Scintillation and optical properties of xenon-doped liquid argon;Journal of Instrumentation;2022-01-01

3. Projectile-dependent scintillation of a liquid phase argon-xenon mixture;EPL (Europhysics Letters);2020-02-07

4. Fast component re-emission in Xe-doped liquid argon;Journal of Instrumentation;2019-09-26

5. Electron transport and negative streamers in liquid xenon;Plasma Sources Science and Technology;2019-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3