Abstract
This paper describes and validates a new and improved universal theory of the Poisson bracket. A simple coordinate-invariant system of simultaneous linear algebraic equations is presented, by which both the Poisson bracket and its Fermi-Dirac counterpart can readily be calculated for Lagrangian dynamical systems with arbitrarily complicated constraint structure.
Reference22 articles.
1. Allcock G. R. 1973 A simple Lagrangian formalism for Fermi-Dirac quantization. Contribution to Cooperative phenomena (ed. H. Haken & M. Wagner) pp. 350-361. Heidelberg: Springer.
2. Allcock G. R. 1975 The intrinsic properties of rank and nullity of the Lagrange bracket in the one dimensional calculus of variations. Phil. Trans. Lond. A (in the Press).
3. Bishop R. L. & Goldberg S. I. 1968 Tensor analysis on manifolds. New York: Macmillan.
4. Cartan E. 1922 Lemons sur les invariants integraux. Paris: Hermann.
5. Corben H. D. & Stehle P. 1950 Classical mechanics esp. §90. New York: Wiley.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献