Three dimensional stagnation point flow into a corner

Author:

Abstract

The principal features of the three dimensional laminar motion produced when a viscous incompressible fluid impinges on a corner, formed by two infinitely long planes meeting at an angle (π 2α), are discussed mainly for the almost-planar configuration, where the slight cranking of the planes promotes flow in the third direction. On the face of it, there seem to be two quite distinct flows possible when α becomes small. One is the known two dimensional stagnation-point motion with the stagnation line at a right angle to the line of intersection. The other is in effect a three dimensional sink-flow, with fluid approaching the stagnation point radially in the cross-flow plane, which is normal to the line of intersection, while accelerating away from it, parallel to the line of intersection. (This flow can also be considered as an axisymmetric stagnation point motion with the line of intersection as the axis of symmetry and all flow direction reversed.) The explanation of this apparent non-uniqueness is that the first major alteration in the characteristics of the viscous and inviscid steady flowfields occurs while α is still small, due essentially to the interactions between the breakdown of the linearization procedure and the emergence of transverse viscous forces close to the corner. Specifically, the critical value of α is 0(l/lnR e) where Re, a characteristic Reynolds number of the motion, is assumed to be large. In that regime, for a concave corner, the pattern of the flow develops non-linearly away from the planar form, for a = 0, toward the completely different kind of motion corresponding to the sink-flow phenomenon. The flow in the corner is derived numerically and exhibits a partial reversal in the direction of the cross-plane velocity when the corner angle is sufficiently increased. New exact solutions of the Navier-Stokes equations are also proposed for the sink-flows at arbitrary positive values of α , the solution as -α > 0 + being precisely that obtained as a In Re becomes large and positive. In contrast, for the convex corner the effect of increasing the inclination ( —α ) is to compress the boundary layer substantially, and the cross-plane flow is always outward.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference17 articles.

1. Barclay W. H. 1973 Aeron.

2. Carrier G. F. 1946 Qu.24 147.

3. Qu.appl. Math. 4 367.

4. Carrier G. F. & Dowdall R. B. Unpublished note.

5. Desai S. S. & Mangier K. W. 1974 R .A .E . Tech. Rept. 74062.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of research on streamwise corner boundary layer;Physics of Fluids;2023-08-01

2. Mixed convection flow near an axisymmetric stagnation point on a vertical cylinder;Journal of Engineering Mathematics;2008-10-10

3. Combined free and forced convection in a corner;International Journal of Heat and Mass Transfer;2002-05

4. Concerning three-dimensional flow past a tall building on flat ground;The Quarterly Journal of Mechanics and Applied Mathematics;1997-02-01

5. On the dual solutions assoclated with boundary-layer equations in a corner;Journal of Engineering Mathematics;1992-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3