Analysis of mechanotransduction dynamics during combined mechanical stimulation and modulation of the extracellular-regulated kinase cascade uncovers hidden information within the signalling noise

Author:

Ascolani Gianluca12,Skerry Timothy M.1,Lacroix Damien23,Dall'Ara Enrico12ORCID,Shuaib Aban12ORCID

Affiliation:

1. Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

2. Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK

3. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

Abstract

Osteoporosis is a bone disease characterized by brittle bone and increased fracture incidence. With ageing societies worldwide, the disease presents a high burden on health systems. Furthermore, there are limited treatments for osteoporosis with just two anabolic pharmacological agents approved by the US Food and Drug Administration. Healthy bones are believed to be maintained via an intricate relationship between dual biochemical and mechanical (bio-mechanical) stimulations. It is widely considered that osteoporosis emerges as a result of disturbances to said relationship. The mechanotransduction process is key to this balance, and disruption of its dynamics in bone cells plays a role in osteoporosis development. Nonetheless, the exact details and mechanisms that drive and secure the health of bones are still elusive at the cellular and molecular scales. This study examined the dual modulation of mechanical stimulation and mechanotransduction activation dynamics in an osteoblast (OB). The aim was to find patterns of mechanotransduction dynamics demonstrating a significant change that can be mapped to alterations in the OB responses, specifically at the level of gene expression and osteogenic markers such as alkaline phosphatase. This was achieved using a three-dimensional hybrid multiscale computational model simulating mechanotransduction in the OB and its interaction with the extracellular matrix, combined with a numerical analytical technique. The model and the analysis method predict that within the noise of mechanotransduction, owing to modulation of the bio-mechanical stimulus and consequent gene expression, there are unique events that provide signatures for a shift in the system's dynamics. Furthermore, the study uncovered molecular interactions that can be potential drug targets.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechano-immunology in microgravity;Life Sciences in Space Research;2023-05

2. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms;Frontiers in Bioengineering and Biotechnology;2023-02-22

3. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues;Antioxidants;2022-08-18

4. Identification osteogenic signaling pathways following mechanical stimulation: A systematic review;Current Stem Cell Research & Therapy;2021-10-06

5. Multiscale modeling in disease;Current Opinion in Systems Biology;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3