Non-muscle myosin II induces disassembly of actin stress fibres independently of myosin light chain dephosphorylation

Author:

Matsui Tsubasa S.1,Kaunas Roland2,Kanzaki Makoto1,Sato Masaaki13,Deguchi Shinji1

Affiliation:

1. Department of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan

2. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA

3. Department of Bioengineering and Robotics, Tohoku University, Sendai 980-8579, Japan

Abstract

Dynamic remodelling of actin stress fibres (SFs) allows non-muscle cells to adapt to applied forces such as uniaxial cell shortening. However, the mechanism underlying rapid and selective disassembly of SFs oriented in the direction of shortening remains to be elucidated. Here, we investigated how myosin crossbridge cycling induced by MgATP is associated with SF disassembly. Moderate concentrations of MgATP, or [MgATP], induced SF contraction. Meanwhile, at [MgATP] slightly higher than the physiological level, periodic actin patterns emerged along the length of SFs and dispersed within seconds. The actin fragments were diverse in length, but comparable to those in characteristic sarcomeric units of SFs. These results suggest that MgATP-bound non-muscle myosin II dissociates from the individual actin filaments that constitute the sarcomeric units, resulting in unbundling-induced disassembly rather than end-to-end actin depolymerization. This rapid SF disassembly occurred independent of dephosphorylation of myosin light chain. In terms of effects on actin–myosin interactions, a rise in [MgATP] is functionally equivalent to a temporal decrease in the total number of actin–myosin crossbridges. Actin–myosin crossbridges are known to be reduced by an assisting load on myosin. Thus, the present study suggests that reducing the number of actin–myosin crossbridges promotes rapid and orientation-dependent disassembly of SFs after cell shortening.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3