In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market

Author:

Geris L.123,Guyot Y.12,Schrooten J.4,Papantoniou I.15

Affiliation:

1. Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium

2. Biomechanics Research Unit, Université de Liège, Chemin des Chevreuils 1 - BAT 52/3, Liège 4000, Belgium

3. Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300C-PB 2419, Leuven 3001, Belgium

4. Antleron BVBA, Leuven, Belgium

5. Skeletal Biology and Engineering Research Center, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium

Abstract

The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design.

Funder

European Research Council

Research Foundation Flanders

Belgian National Fund for Scientific Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Reference51 articles.

1. A brief definition of regenerative medicine

2. Regenerative Medicine and the Developing World

3. MedMarket Diligence LLC. 2010 Tissue Engineering & Cell Therapy Worldwide 2009–2018. Report no. S520. MedMarket Diligence LLC Foothill Ranch CA.

4. The Impact of Market Volatility on the Cell Therapy Industry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3