Sleep deprivation and stress: a reciprocal relationship

Author:

Nollet Mathieu12ORCID,Wisden William123ORCID,Franks Nicholas P.123ORCID

Affiliation:

1. Department of Life Sciences, Imperial College London, London, UK

2. UK Dementia Research Institute at Imperial College London, London, UK

3. Centre for Neurotechnology, Imperial College London, London, UK

Abstract

Sleep is highly conserved across evolution, suggesting vital biological functions that are yet to be fully understood. Animals and humans experiencing partial sleep restriction usually exhibit detrimental physiological responses, while total and prolonged sleep loss could lead to death. The perturbation of sleep homeostasis is usually accompanied by an increase in hypothalamic–pituitary–adrenal (HPA) axis activity, leading to a rise in circulating levels of stress hormones (e.g. cortisol in humans, corticosterone in rodents). Such hormones follow a circadian release pattern under undisturbed conditions and participate in the regulation of sleep. The investigation of the consequences of sleep deprivation, from molecular changes to behavioural alterations, has been used to study the fundamental functions of sleep. However, the reciprocal relationship between sleep and the activity of the HPA axis is problematic when investigating sleep using traditional sleep-deprivation protocols that can induce stress per se . This is especially true in studies using rodents in which sleep deprivation is achieved by exogenous, and potentially stressful, sensory–motor stimulations that can undoubtedly confuse their conclusions. While more research is needed to explore the mechanisms underlying sleep loss and health, avoiding stress as a confounding factor in sleep-deprivation studies is therefore crucial. This review examines the evidence of the intricate links between sleep and stress in the context of experimental sleep deprivation, and proposes a more sophisticated research framework for sleep-deprivation procedures that could benefit from recent progress in biotechnological tools for precise neuromodulation, such as chemogenetics and optogenetics, as well as improved automated real-time sleep-scoring algorithms.

Funder

UK Dementia Research Institute

Wellcome Trust

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Reference186 articles.

1. Circuit-based interrogation of sleep control

2. Genetic determinants of sleep regulation in inbred mice;Franken P;Sleep,1999

3. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness

4. Circadian Clocks and Sleep: Impact of Rhythmic Metabolism and Waste Clearance on the Brain

5. Relationships among nightly sleep quality, daily stress, and daily affect;Blaxton JM;J. Gerontol. B Psychol. Sci. Soc. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3