Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx

Author:

Purcell Sean C.1,Godula Kamil1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA

Abstract

The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface ‘glycoscape’ at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Research Corporation for Science Advancement

Alfred P. Sloan Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3