Intima heterogeneity in stress assessment of atherosclerotic plaques

Author:

Akyildiz Ali C.1ORCID,Speelman Lambert1,van Velzen Bas2,Stevens Raoul R. F.3,van der Steen Antonius F. W.1,Huberts Wouter3,Gijsen Frank J. H.1

Affiliation:

1. Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands

2. Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands

3. Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands

Abstract

Atherosclerotic plaque rupture is recognized as the primary cause of cardiac and cerebral ischaemic events. High structural plaque stresses have been shown to strongly correlate with plaque rupture. Plaque stresses can be computed with finite-element (FE) models. Current FE models employ homogeneous material properties for the heterogeneous atherosclerotic intima. This study aimed to evaluate the influence of intima heterogeneity on plaque stress computations. Two-dimensional FE models with homogeneous and heterogeneous intima were constructed from histological images of atherosclerotic human coronaries ( n = 12). For homogeneous models, a single stiffness value was employed for the entire intima. For heterogeneous models, the intima was subdivided into four clusters based on the histological information and different stiffness values were assigned to the clusters. To cover the reported local intima stiffness range, 100 cluster stiffness combinations were simulated. Peak cap stresses (PCSs) from the homogeneous and heterogeneous models were analysed and compared. By using a global variance-based sensitivity analysis, the influence of the cluster stiffnesses on the PCS variation in the heterogeneous intima models was determined. Per plaque, the median PCS values of the heterogeneous models ranged from 27 to 160 kPa, and the PCS range varied between 43 and 218 kPa. On average, the homogeneous model PCS values differed from the median PCS values of heterogeneous models by 14%. A positive correlation ( R 2 = 0.72) was found between the homogeneous model PCS and the PCS range of the heterogeneous models. Sensitivity analysis showed that the highest main sensitivity index per plaque ranged from 0.26 to 0.83, and the average was 0.47. Intima heterogeneity resulted in substantial changes in PCS, warranting stress analyses with heterogeneous intima properties for plaque-specific, high accuracy stress assessment. Yet, computations with homogeneous intima assumption are still valuable to perform sensitivity analyses or parametric studies for testing the effect of plaque geometry on PCS. Moreover, homogeneous intima models can help identify low PCS, stable type plaques with thick caps. Yet, for thin cap plaques, accurate stiffness measurements of the clusters in the cap and stress analysis with heterogeneous cap properties are required to characterize the plaque stability.

Funder

Stichting voor de Technische Wetenschappen

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3