On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces

Author:

König Gerhard12ORCID,Riniker Sereina2ORCID

Affiliation:

1. Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

2. Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

Abstract

Force fields based on molecular mechanics (MM) are the main computational tool to study the relationship between protein structure and function at the molecular level. To validate the quality of such force fields, high-level quantum-mechanical (QM) data are employed to test their capability to reproduce the features of all major conformational substates of a series of blocked amino acids. The phase-space overlap between MM and QM is quantified in terms of the average structural reorganization energies over all energy minima. Here, the structural reorganization energy is the MM potential-energy difference between the structure of the respective QM energy minimum and the structure of the closest MM energy minimum. Thus, it serves as a measure for the relative probability of visiting the QM minimum during an MM simulation. We evaluate variants of the AMBER, CHARMM, GROMOS and OPLS biomolecular force fields. In addition, the two blocked amino acids alanine and serine are used to demonstrate the dependence of the measured agreement on the QM method, the phase, and the conformational preferences. Blocked serine serves as an example to discuss possible improvements of the force fields, such as including polarization with Drude particles, or using tailored force fields. The results show that none of the evaluated force fields satisfactorily reproduces all energy minima. By decomposing the average structural reorganization energies in terms of individual energy terms, we can further assess the individual weaknesses of the parametrization strategies of each force field. The dominant problem for most force fields appears to be the van der Waals parameters, followed to a lesser degree by dihedral and bonded terms. Our results show that performing a simple QM energy optimization from an MM-optimized structure can be a first test of the validity of a force field for a particular target molecule.

Funder

FP7 Ideas: European Research Council

Max-Planck-Gesellschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3