The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition

Author:

Gérard Claude1,Goldbeter Albert12

Affiliation:

1. Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels 1050, Belgium

2. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Marais Street, Stellenbosch 7600, South Africa

Abstract

To understand the dynamics of the cell cycle, we need to characterize the balance between cell cycle arrest and cell proliferation, which is often deregulated in cancers. We address this issue by means of a detailed computational model for the network of cyclin-dependent kinases (Cdks) driving the mammalian cell cycle. Previous analysis of the model focused on how this balance is controlled by growth factors (GFs) or the levels of activators (oncogenes) and inhibitors (tumour suppressors) of cell cycle progression. Supra-threshold changes in the level of any of these factors can trigger a switch in the dynamical behaviour of the Cdk network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. Here, we focus on the regulation of cell proliferation by cellular environmental factors external to the Cdk network, such as the extracellular matrix (ECM), and contact inhibition, which increases with cell density. We extend the model for the Cdk network by including the phenomenological effect of both the ECM, which controls the activation of the focal adhesion kinase (FAK) that promotes cell cycle progression, and cell density, which inhibits cell proliferation via the Hippo/YAP pathway. The model shows that GFs and FAK activation are capable of triggering in a similar dynamical manner the transition to cell proliferation, while the Hippo/YAP pathway can arrest proliferation once cell density passes a critical threshold. The results account for the dependence or independence of cell proliferation on serum and/or cell anchorage to ECM. Whether the balance in the Cdk network is tilted towards cell cycle arrest or proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple, internal or external signals that promote or impede progression in the cell cycle.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3