Longitudinal characterization of local perfusion of the rat placenta using contrast-enhanced ultrasound imaging

Author:

Lawrence Dylan J.1,Huda Kristie1,Bayer Carolyn L.1ORCID

Affiliation:

1. Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA

Abstract

The placenta performs many physiological functions critical for development. Insufficient placental perfusion, due to improper vascular remodelling, has been linked to many pregnancy-related diseases. To study longitudinal in vivo placental perfusion, we have implemented a pixel-wise time–intensity curve (TIC) analysis of contrast-enhanced ultrasound (CEUS) images. CEUS images were acquired of pregnant Sprague Dawley rats after bolus injections of gas-filled microbubble contrast agents. Conventionally, perfusion can be quantified using a TIC of contrast enhancement in an averaged region of interest. However, the placenta has a complex structure and flow profile, which is insufficiently described using the conventional technique. In this work, we apply curve fitting in each pixel of the CEUS image series in order to quantify haemodynamic parameters in the placenta and surrounding tissue. The methods quantified an increase in mean placental blood volume and relative blood flow from gestational day (GD) 14 to GD18, while the mean transit time of the microbubbles decreased, demonstrating an overall rise in placental perfusion during gestation. The variance of all three parameters increased during gestation, showing that regional differences in perfusion are observable using the pixel-wise TIC approach. Additionally, the high-resolution parametric images show distinct regions of high blood flow developing during late gestation. The developed methods could be applied to assess placental vascular remodelling during the treatment of the pathologies of pregnancy.

Funder

Louisiana Board of Regents

National Institute of General Medical Sciences

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3